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Abstract 

We propose a cosmic time gauge formalism in quantum cosmology to get 

an equation for the SchGdinger type. Its application to the chaotic inllaton 

scenario reveals that the uncertainty in the scale factor grows exponentially as 

the universe inflates. 
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I. Introduction 

The quantum theory of geometry’ is still in its infancy and suffers from many con- 

ceptual difficulties as well as technical ones. One of the conceptual difficulties comes 

from general coordinate invariance built in to general relativity. The arbitrariness 

of the coordinate choice makes the meaning of time obscure. 

Previously many people s have attempted to identify the “time” in the Wheeler- 

Dewitt equation.3 Even in the simplified minisuperspace model’, the concept of 

time remains unclear. 

The problem of time in quantum cosmology is not only an academic one but a 

potentially practical one. Many people now believe that there was once an expo- 

nentially expanding era in history of universe to solve the horizon, flatness problems 

etc.4 4t the moment the most probable inflationary universe scenario seems to be 

the chaotic universe scenario advocated by Linde. r There, the initial conditions are 

essentially given by the consideration of quantum gravity era of universe and the 

classical motion of the “inflaton” scalar field and the scale factor of the universe are 

described by the cosmic time parameter. In order to study the quantum era before 

the classical era of the universe we have to find out the right description of the time 

development of the wave function of universe. 

In this paper dedicated to Professor Yoshio Yamaguchifor his 60th birthday, the 

author would like to make a proposal which hopefully demystifies the wave equa- 

tion of universes by reducing quantum cosmology to a down-to-earth Schrodinger 

equation 

i$ = rc(t)lc, 0) 

Here the time is the cosmic time in the Robertson-Walker metric and N(t) is a time 

dependent Hamiltonian which we shall define in what follows. An approximate 

solution is also given for the chaotic universe model. 
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II. A Model and Hamiltonian Constraint 

Let us consider the XI$~ model in the Robertson-Walker universe having the chaotic 

inflationary universe scenario5 in mind. The action is given by 

s= - & / v’?hR 

+ / J-gd’x[ $Y’“~~4&~ - $+I 

For the metric of closed universe 

ds2 = N2dt2 - a’(t) $f&+ + ?(d@ + sinZBd@) 

and a homogeneous scalar field 4, the action S in Eq.(2) reduces to 

(2) 

(3) 

Here .U is the lapse function ’ and g2 = g. 

By varying the action S with respect to the lapse function 1, we obtain the 

Hamiltonian constraint 

H = -.g - $ + &$ + ~~2~3. $ e 0, 

where rr’. and rr,+ are conjugate momenta to a and 4, respectively. In the conventional 

quantization prescription, this constraint is replaced by an equation for the quantum 

state 

H$=O 

with rr, ---f -al&r and ~TQ + -ial&t~. 

(5) 

The Wheeler-Dewitt equation (5) has some peculiarities. First it does not 

contain the “time” at all. How can it describe the history of universe? The second, 

which is intrinsically related to the first, is that it is impossible to construct a 

positive definite conserved probability, since Eq.(5) is a second order differential 

equation of the KleinGordon type. So we are in trouble with the probabilistic 

interpretation of the wave function of universe. 
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III. Time in Quantum Cosmology 

One may realize that the passage from the first class constraint(4) to the wave 

equation is not the only possibility in the quantum theory of constrained systems.s 

The other possibility, which is perhaps more familiar to particle physists, is fixing 

the gauge, x o 0 in such a way {x,H}n.n. # 0. The gauge fixing condition is 

arbitrary unless {~,H}P.B. = 0. However, the canonical choice is the one which 

satisfies 

{X,H}P.B. = 1 (6) 

Since in this case there is no Faddeev-Popov complexity. From Eq.(6) it is clear 

that x plays a role of time, which is conjugate to the Hamiltonian. 

It is perhaps instructive to digress here and recall the old story of the “time 

operator” in quantum mechanics. Pauli” pointed out that the “time operator” 2’ 

which satisfies the commutation relation with the’Hamiltonian, [T,H]=i is actually 

ill-defined in the Hilbert space. His argument is based on the observation that the 

lower boundedness of Hamiltonian contradicts with the existence of an energy shift 

operator eirT. For example, a singular expression T = (p-‘q + qp-‘)/2 would be 

obtained in the case of the Hamiltonian H = p2/2 for a free point particle which 

is obviously positive definite. A counter example is T = p/E for an unbounded 

Hamiltonian H = p2/2 + Eq which describes a point particle in a uniform electric 

field, E. Here it has to be pointed out that the Hamiltonian (4) of quantum cos- 

mology is not bounded due to the negative sign in front of the kinetic term of scale 

factor. This may suggest that quantum cosmology is in a unique position in which 

the time operator is well-defined and plays a significant role. 

Going back to the gauge condition x = 0, let us consider its formal construction 

so that {x,H}n.B. = 1 holds in a general framework of analytical dynamics. Let a 

canonical set of dynamical variables be (pi, qi), i = 1,2,. . N. 

A general solution of Hamilton’s equations 

CVH 

qi = 8Pi ’ 

ii = -ax 
8% 

i = 1,2,...N, .(7) 
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contains 2N integration constants corresponding to initial values of p’s and q’s, One 

of 2N constants corresponds to the arbitrariness of initial time te, 

Pi = pi(t -tO;cl,cZa”‘cZN-1) 

qi = qi(t-to;cl,cz,...~ZN-l) , i= 1,2,...N. (8) 

Eliminating the integrating constants cl, cs . . . CsN-i we may solve Eq.(E) in terms 

oft -to, 

t - t0 = T(Piv qi) (9) 

By construction, T(p,q) satisfies the Poisson bracket {T, H,}p.B. = 1. It may be 

amusing to reproduce T’s in the previous examples by following the procedure 

(7) - (9). It is now obvious that we can take as a gauge condition. 

x(p,q)=T(p,q)-t=O 00) 

It is suggestive to point out that the “time” has been manufactured from dynamical 

variables through dynamics. This may sound philosophically deep. 

Now that we have chosen a gauge, let us consider the dynamics in the restricted 

phase space under the constraint H(p, q) = 0 and the gauge condition x(p, q, t) = 0. 

First find a canonical transformation from a set (pi, pi), i = 1,2,. . N to a new set 

(p*i,q*i), i= 1,2,... N and (H, x), such that 

N N-l 

xpidqi - Hdt = c pfdq,: + Hdx - Udt + d@(q, q’, x, t) . (11) 
i=l i=l 

Here @ is a generator of the canonical transformation. It is clear from Eq. (11) 

that in the restricted phase space the time development is described by a new 

Hamiltonian 

U(P*>q*,t) = 

We are now in a position to quantize our constrained system by employing the 

new Hamiltonian (12) and setting commutation relations, [pf,qJ] = i&j. Or in the 

Schrddinger representation, the time development of the state is dictated by 

i&$J(q’t) = Jl-ia/aq*,t)?J(q’,t) 03) 

There may well remain operator ordering ambiguities for which we do not have 

any general prescription. 
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In the next section we are going to apply the quantization method prescribed 

here to the model given in the previous section. 

IV. Quantum Chaotic Universe Model 

Let us go back to our model given in Eq.(4). The classical equations for 4 and a 

are given by Hamilton’s equations with the Hamiltonian (4) and are the standard 

ones, 

4 + 3H&+& 

fp = !$;(+ili’+v)-$ (14) 

(Here we took JJ = 1.) : 

In the interesting regime (Mr S. 4 S X-t&f,, X - 10-‘2,M,: Planck mass 

- g-r), the scalar field is slowly varying, so we can neglect the 4 term in Eq. (14) 

and the pki’ term in Eq. (15). We can also ignore the spatial curvature term -l/a* 

in Eq.(15) in that regime.s Then 4 satisfies a first order linear equation! 

&i & - = $4 

In the regime under consideration, it is sufficient to consider a simplified Hamilto- 

nian constraint instead of the original one (4), 

~~=A!?$ $h# + 2aVT s 0. (1‘3) 

From now on we shall confine ourselves to this new constrained system which is 

supposed to be a good approximation to the original one before the oscillation of 

the scalar field starts. 

For H’, Eq. (16) becomes exact. According to the prescription in the previous 

section, the canonical gauge condition is simply given by 

x = -~log(rn/&) - t % 0 . (17) 

Namely log 4 is a “clock”r. 
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Perhaps for such a simple system we do not need the heavy artillery of canonical 

transformation in 53 to get a new Hamiltonian. Eqs. 17 and 18 immediately give 

Let us choose the symmetrization prescription for the operator ordering, ~:/a + 

--a-t a,a-i and write z = $zg, m = ge2 and 

k(t) = ;A&. eet . 

We obtain a time dependent SchrGdinger equation 

a i a2 - i-q, ----- 
at 1 

wx2 * 
2ml%? 2 1 

(20) 

Apart from the minus sign on the left hand side, this is a quantum mechanics of an 

upside-down harmonic oscillator with a time dependent spring constant given by 

Eq. (20). (We may extend the region of z so that -co < z < co, or set $(O) = 0. 

Here we do not discuss the latter possibility). 

For I$ < 1, the potential is just that of the upside-down harmonic oscillator 

discussed by Guth and Pi” m a completely different context. The wave packet 

initially localized at z = O(o = 0) would quickly spread out while the average 

value of a = (i~)s/~ would show an exponential growth, corresponding to Linde’s 

inflation. 

For /pLtl X 1 but within the range A& S 4 5 X-t&f,, the potential flattens out 

and the growth of < zz >cx< a3 > becomes proportional to t as one can see in any 

quantum mechanics text book. Fortunately Eq. (21) is exactly soluble. We just 

give an expression for I$/’ in the case of a gaussian distribution at t = 0, 

‘Tw = J& g-J -*: _a,zAr; ; 3 U ()I (21) 

Here (Y is an initial spread of the wave function and Al and AZ are solutions of 

($ - w'(t))Ai = 0 (i = 1,2) , (22) 
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with 

Al(O) = &O) = 1, 

$0) = AZ(O) = 0, 

w’(f) = X&M;4esp -4Jj;z [ 1 3x ’ 

‘t = tjg = 

(24) 

[time in Planck’s unit). 

A’s can be expressed by Bessel functions of an imaginary argument. For an 

almost constant w (and therefore 4), the A’s grow ‘exponentially while for a small 

w (and therefore large t), Al sz 1 and AZ z z. 

What are implications of our result Eq. (22) for the chaotic universe scenario? 

At least one thing is clear; the probability distribution of the scale factor be- 

comes broader while its mean value follows the classical value as time goes on. This 

phenomenon is also easily understood from consideration of the uncertainty princi- 

ple. Roughly speaking, the Hubble expansion rate is conjugate to the scale factor. 

If we sharply define the scale factor at the Planck time, the scale factor after some 

time would be extremely uncertain since the rate of the exponential expansion is 

very much uncertain., Perhaps it is important to point out that in contrast to the 

scale factor, the distribution of the scalar 4 becomes more and more sharply peaked 

around the classical value as time goes on even if we take into account the zero point 

fluctuation of 4.r’ Hence inclusion of inhomogeneous component 4 will not change 

a qualitative feature of the distribution of scale factor. It is not clear for the present 

author whether the broadening distribution of the scale factor alters the qualitative 

features of the global structure of the universe.‘s 



-8- FERMILAB-Conf-86/101-T 

V. Summary 

In order to quantize a simplified version of general relativity (minisuperspace model), 

we have proposed a special gauge choice, T(p, g) - t = 0. Here the “time” T(p,q) is 

determined by classical dynamics. Then the quantum mechanics of the universe is 

formally given by Eq.(1)((13)) with the Hamiltonian (12). 

Fortunately enough the problem is exactly solvable in the case of chaotic in- 

flation model if one concentrates on the nonoscillation regime. The probabilistic 

distribution of the scale factor of universe is explicitly given. It spreads by a huge 

amount corresponding to the gigantic expansion of universe. 
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